The subiculum sensitizes retrosplenial cortex layer 2/3 pyramidal neurons.
Mengxuan GaoAsako NoguchiYuji IkegayaPublished in: The Journal of physiology (2021)
The retrosplenial cortex (RSC), a cerebral region involved in diverse cognitive functions, is an anatomical hub that forms monosynaptic connections with various brain areas. Here, we report a unique form of short-term intrinsic plasticity in mouse granular RSC layer 2/3 pyramidal cells. These cells exhibited delayed spikes in response to somatic current injection, but the spike latencies were shortened by a preceding brief depolarization (priming). This priming-induced sensitization is distinct from desensitization, which is commonly observed in other cortical neurons. The facilitatory priming effect lasted for more than 3 s, providing a time window for increased sensitivity to RSC inputs. Based on in vitro and in vivo patch-clamp recordings following optogenetic stimulation of axonal fibres, we found that preactivation of subicular afferents replicated the facilitatory priming effect. The results suggest that subicular inputs to RSC layer 2/3 neurons may modulate subsequent information integration in the RSC layer 2/3 circuits.