Login / Signup

Mycorrhizae Helper Bacteria: Unlocking Their Potential as Bioenhancers of Plant-Arbuscular Mycorrhizal Fungal Associations.

Seema SangwanRadha Prasanna
Published in: Microbial ecology (2021)
The dynamic interactions of plants and arbuscular mycorrhizal fungi (AMF) that facilitate the efficient uptake of minerals from soil and provide protection from various environmental stresses (biotic and abiotic) are now also attributed to a third component of the symbiosis. These are the less investigated mycorrhizae helper bacteria (MHB), which constitute a dense, active bacterial community, tightly associated with AMF, and involved in the development and functioning of AMF. Although AMF spores are known to host several bacteria in their spore walls and cytoplasm, their role in promoting the ecological fitness and establishment of AMF symbiosis by influencing spore germination, mycelial growth, root colonization, metabolic diversity, and biocontrol of soil borne diseases is now being deciphered. MHB also promote the functioning of arbuscular mycorrhizal symbiosis by triggering various plant growth factors, leading to better availability of nutrients in the soil and uptake by plants. In order to develop strategies to promote mycorrhization by AMF, and particularly to stimulate the ability to utilize phosphorus from the soil, there is a need to decipher crucial metabolic signalling pathways of MHB and elucidate their functional significance as mycorrhiza helper bacteria. MHB, also referred to as AMF bioenhancers, also improve agronomic efficiency and formulations using AMF along with enriched population of MHB are a promising option. This review covers the aspects related to the specificity and mechanisms of action of MHB, which positively impact the formation and functioning of AMF in mycorrhizal symbiosis, and the need to advocate MHB as AMF bioenhancers towards their inclusion in integrated nutrient management practices in sustainable agriculture.
Keyphrases
  • regulatory t cells
  • plant growth
  • climate change
  • healthcare
  • physical activity
  • body composition
  • human health
  • risk assessment
  • heavy metals
  • immune response
  • mass spectrometry
  • cell wall