A TADF Emitter Featuring Linearly Arranged Spiro-Donor and Spiro-Acceptor Groups: Efficient Nondoped and Doped Deep-Blue OLEDs with CIEy <0.1.
Guoqi XiaCheng QuYunlong ZhuJianjiang YeKaiqi YeZuolun ZhangYue WangPublished in: Angewandte Chemie (International ed. in English) (2021)
Reported herein is a molecular design strategy of deep-blue emitters for resolving the lack of highly efficient deep-blue organic light-emitting diodes (OLEDs) featuring CIEy (Commission Internationale de l'Eclairage) color coordinates matching the display requirements (<0.1). The strategy is to combine weak spiro-donor and spiro-acceptor groups into a linear donor-π-acceptor type of thermally-activated delayed fluorescence molecule through a sterically bulky π-spacer. The strategy endows an emitter with deep-blue emission, a narrower emission bandwidth (51 nm in toluene), a high photoluminescence quantum yield (0.95 in toluene), weak concentration quenching, and efficient triplet-exciton utilization, which are all attractive characteristics for emitters of deep-blue OLEDs with lower CIEy coordinates. Owing to the rational design, the emitter has realized not only highly efficient doped deep-blue OLEDs with external quantum efficiencies (EQEs) up to 25.4 % and CIEy less than 0.1 but also so far the most efficient nondoped deep-blue OLED (EQE up to 22.5 %) with CIEy less than 0.1.