In Situ Encapsulating α-MnS into N,S-Codoped Nanotube-Like Carbon as Advanced Anode Material: α → β Phase Transition Promoted Cycling Stability and Superior Li/Na-Storage Performance in Half/Full Cells.
Dai-Huo LiuWen-Hao LiYan-Ping ZhengZheng CuiXin YanDao-Sheng LiuJiawei WangYu ZhangHong-Yan LüFeng-Yang BaiJin-Zhi GuoXing-Long WuPublished in: Advanced materials (Deerfield Beach, Fla.) (2018)
Incorporation of N,S-codoped nanotube-like carbon (N,S-NTC) can endow electrode materials with superior electrochemical properties owing to the unique nanoarchitecture and improved kinetics. Herein, α-MnS nanoparticles (NPs) are in situ encapsulated into N,S-NTC, preparing an advanced anode material (α-MnS@N,S-NTC) for lithium-ion/sodium-ion batteries (LIBs/SIBs). It is for the first time revealed that electrochemical α → β phase transition of MnS NPs during the 1st cycle effectively promotes Li-storage properties, which is deduced by the studies of ex situ X-ray diffraction/high-resolution transmission electron microscopy and electrode kinetics. As a result, the optimized α-MnS@N,S-NTC electrode delivers a high Li-storage capacity (1415 mA h g-1 at 50 mA g-1 ), excellent rate capability (430 mA h g-1 at 10 A g-1 ), and long-term cycling stability (no obvious capacity decay over 5000 cycles at 1 A g-1 ) with retained morphology. In addition, the N,S-NTC-based encapsulation plays the key roles on enhancing the electrochemical properties due to its high conductivity and unique 1D nanoarchitecture with excellent protective effects to active MnS NPs. Furthermore, α-MnS@N,S-NTC also delivers high Na-storage capacity (536 mA h g-1 at 50 mA g-1 ) without the occurrence of such α → β phase transition and excellent full-cell performances as coupling with commercial LiFePO4 and LiNi0.6 Co0.2 Mn0.2 O2 cathodes in LIBs as well as Na3 V2 (PO4 )2 O2 F cathode in SIBs.
Keyphrases
- ion batteries
- electron microscopy
- high resolution
- gold nanoparticles
- ionic liquid
- single cell
- molecularly imprinted
- label free
- induced apoptosis
- high intensity
- risk assessment
- computed tomography
- stem cells
- cell therapy
- cell proliferation
- endoplasmic reticulum stress
- oxidative stress
- bone marrow
- high speed
- simultaneous determination