Login / Signup

Optical Window to Polarity of Electrolyte Solutions.

Omar O'MariValentine Ivanov Vullev
Published in: Molecules (Basel, Switzerland) (2023)
Medium polarity plays a crucial role in charge-transfer processes and electrochemistry. The added supporting electrolyte in electrochemical setups, essential for attaining the needed electrical conductivity, sets challenges for estimating medium polarity. Herein, we resort to Lippert-Mataga-Ooshika (LMO) formalism for estimating the Onsager polarity of electrolyte organic solutions pertinent to electrochemical analysis. An amine derivative of 1,8-naphthalimide proves to be an appropriate photoprobe for LMO analysis. An increase in electrolyte concentration enhances the polarity of the solutions. This effect becomes especially pronounced for low-polarity solvents. Adding 100 mM tetrabutylammonium hexafluorophosphate to chloroform results in solution polarity exceeding that of neat dichloromethane and 1,2-dichloroethane. Conversely, the observed polarity enhancement that emerges upon the same electrolyte addition to solvents such as acetonitrile and N , N -dimethylformamide is hardly as dramatic. Measured refractive indices provide a means for converting Onsager to Born polarity, which is essential for analyzing medium effects on electrochemical trends. This study demonstrates a robust optical means, encompassing steady-state spectroscopy and refractometry, for characterizing solution properties important for charge-transfer science and electrochemistry.
Keyphrases
  • ionic liquid
  • gold nanoparticles
  • solid state
  • mass spectrometry
  • label free
  • fluorescent probe
  • molecularly imprinted
  • preterm infants
  • single molecule