Login / Signup

Synthesis, characterization and antifungal activity of imidazole chitosan derivatives.

Lulu WuLiangxin FanLijun ShiCaixia WangZhenliang PanCuilian XuGuoyu Yang
Published in: Carbohydrate research (2024)
Five novel imidazole-functionalized chitosan derivatives 3a-3e were synthesized via addition reactions of chitosan with imidazole derivatives. The partial incorporation of imidazole moiety in chitosan were confirmed by FTIR, UV, 1 H NMR, XRD, SEM and GPC. Meanwhile, the antifungal activity against three common plant pathogenic fungi: Phytophthora nicotianae (P. nicotianae), Fusarium graminearum (F. graminearum) and Rhizoctonia solani (R. solani), was assayed in vitro at 0.5 and 1.0 mg/mL by hyphal measurement, and the introduction of imidazole group can influence the antifungal activity. At 0.5 mg/mL, 3e inhibited P. nicotianae growth by 42 % and had an inhibitory index against R. solani of 50 %. Derivative 3e was more effective than unmodified chitosan whose antifungal index was 17 % against P. nicotianae and 22 % against R. solani. To our surprise, at 1.0 mg/mL, the inhibition rate of 3e against R. solani can reach 99 %, while the inhibition rate of chitosan is only 38 %. These results indicated that some imidazole chitosan derivatives with enhanced antifungal activities could serve as potential biomaterial for antifungal application.
Keyphrases
  • drug delivery
  • wound healing
  • candida albicans
  • hyaluronic acid
  • magnetic resonance
  • high resolution
  • mass spectrometry
  • human health
  • tandem mass spectrometry
  • molecularly imprinted