Login / Signup

Development and Evaluation of Bis-benzothiazoles as a New Class of Benzothiazoles Targeting DprE1 as Antitubercular Agents.

Rabiya SamoonShashikanta SauArnab RoyKishan Kumar ParidaKalicharan SharmaPrasanna Anjaneyulu YakkalaRikeshwer Prasad DewanganMalik Zainul AbdinNitin Pal KaliaSyed Shafi
Published in: ACS infectious diseases (2024)
Benzothiazole-bearing compounds have emerged as potential noncovalent DprE1 (decaprenylphosphoryl-β-d-ribose-2'-epimerase) inhibitors active against Mycobacterium tuberculosis . Based on structure-based virtual screening (PDB ID: 4KW5), a focused library of thirty-one skeletally diverse benzothiazole amides was prepared, and the compounds were assessed for their antitubercular activity against M.tb H37Ra. Most potent compounds 3b and 3n were further evaluated against the M.tb H37Rv strain by the microdilution assay method. Among the compounds evaluated, bis - benzothiazole amide 3n emerged as a hit molecule and demonstrated promising antitubercular activity with minimum inhibitory concentration (MIC) values of 0.45 μg/mL and 8.0 μg/mL against H 37 Ra and H 37 Rv, respectively. Based on the preliminary hit molecule ( 3n) , a focused library of 12 more bis-benzothiazole amide derivatives was further prepared by varying the substituents on either side to obtain new leads and generate a structure-activity relationship (SAR). Among these compounds, 6a, 6c , and 6d demonstrated remarkable antitubercular activity with MIC values of 0.5 μg/mL against H37Ra and 1.0, 2.0, and 8.0 μg/mL against H 37 Rv, respectively. The most active compound, 6a , also displayed significant efficacy against four drug-resistant tuberculosis strains. Compound 6a was assessed for in vitro cytotoxicity against the HepG2 cell line, and it displayed insignificant cytotoxicity. Furthermore, time-kill kinetic studies demonstrated time- and dose-dependent bactericidal activity of this compound. The GFP release assay revealed that compound 6a targets the inhibition of a cell wall component. SNPs in dprE-1 gene assessment revealed that compound 6a binds to tyrosine at position 314 of DprE1 and replaces it with histidine, causing resistance similar to that of standard TCA1. In silico docking studies further suggest that the strong noncovalent interactions of these compounds may lead to the development of potent noncovalent DprE1 inhibitors.
Keyphrases