A practical synthesis of nitrone-derived C5a-functionalized isofagomines as protein stabilizers to treat Gaucher disease.
Huang-Yi LiWei-An ChenHung-Yi LinChi-Wei TsaiYu-Ting ChiuWen-Yi YunNi-Chung LeeYin-Hsiu ChienWuh-Liang HwuWei-Chieh ChengPublished in: Communications chemistry (2024)
Isofagomine (IFG) and its analogues possess promising glycosidase inhibitory activities. However, a flexible synthetic strategy toward both C5a-functionalized IFGs remains to be explored. Here we show a practical synthesis of C5a-S and R aminomethyl IFG-based derivatives via the diastereoselective addition of cyanide to cyclic nitrone 1. Nitrone 1 was conveniently prepared on a gram scale and in high yield from inexpensive (-)-diethyl D-tartrate via a straightforward method, with a stereoselective Michael addition of a nitroolefin and a Nef reaction as key steps. A 268-membered library (134 × 2) of the C5a-functionalized derivatives was submitted to enzyme- or cell-based bio-evaluations, which resulted in the identification of a promising β-glucocerebrosidase (GCase) stabilizer demonstrating a 2.7-fold enhancement at 25 nM in p.Asn370Ser GCase activity and a 13-fold increase at 1 μM in recombinant human GCase activity in Gaucher cell lines.