Rational design of heme enzymes for biodegradation of pollutants toward a green future.
Ying-Wu LinPublished in: Biotechnology and applied biochemistry (2019)
Environmental pollutants, such as industrial dyes and halophenols, are harmful to human health, which urgently demand degradation. Bioremediation has been shown to be a cost-effective and ecofriendly approach. As reviewed herein, significant progress has been made in the last decade for biodegradation of both industrial dyes and halophenols, by engineering of native dye-decolorizing peroxidases (DyPs) and dehaloperoxidases (DHPs), and by design of artificial heme enzymes in both native and de novo protein scaffolds. The catalytic efficiency of artificial DyPs and DHPs can be rationally designed comparable to or even beyond those of natural counterparts. The enzymes are on their way from laboratory to industry and will play more crucial roles in environmental protection toward a green future.