Login / Signup

Two Emissive Long-Lived Excited States of an Imidazole-Functionalized Ruthenium Dipyridophenazine Complex.

Dajana IsakovRobin GierethDjawed NaurooziStefanie TschierleiSven Rau
Published in: Inorganic chemistry (2019)
A ruthenium(II) polypyridine-type complex based on the dipyridophenazine ligand with a directly fused imidazole unit (L1, dipyrido[3,2-a:2',3'-c]phenazine-10,11-imidazole) has been synthesized, and its electrochemical and photophysical properties have been studied. The cyclic voltammogram of [Ru(tbbpy)2(L1)]2+ (C1) (tbbpy is 4,4'-tert-butyl-2,2'-bipyridine) shows a cathodic shift of the phenazine-based reduction process compared to similar molecules, while the first detected reduction wave (-1.34 V vs Fc/Fc+) is assigned to the imidazole unit within the molecule. On the basis of the TD-DFT calculations, the strong visible absorption band exhibited by C1 is assigned to a metal-to-ligand charge transfer (MLCT) transition with a concurrent ligand-centered (LC) transition. At room-temperature, C1 features emission (Φ = 0.04) from its lowest excited states with time constants of 1.2 and 18.3 μs. These lifetimes are assigned to emission processes from the 3MLCT and 3LC state, respectively. This is the first time that a long-lived dual emission has been observed for a ruthenium(II) complex bearing a directly fused extended π-system. Furthermore, the emission of C1 is quenched upon water addition. In contrast to related compounds based on a dipyridophenazine ligand, the excited state energy is not shifted, and the lifetime is drastically decreased to 169 ns.
Keyphrases