Enzyme-catalyzed chemiluminescence has been widely used in the field of biomedicine, especially in the test kit for various biomarkers. However, the currently reported enzyme-catalyzed chemiluminescence systems suffered from the addition of oxidizing substances, short emission wavelength, and susceptibility to interference by autofluorescence. In this paper, a universal sulfatase-based chemiluminescence system with NIR was developed, in which the designed substrate QM-CF could be transformed into 1,2-dioxetane derivate in the presence of sulfatase and oxygen. This system exhibited long emission wavelengths and CL half-time, a high signal-noise ratio, and without other additives. Importantly, the sulfatase-based chemiluminescence enzyme-linked immunoassay platform was successfully constructed and could be generally applied to detect biomarkers. As a proof of concept, the sulfatase-labeled AFP antibody and substate QM-CF were conveniently suitable for commercial AFP test kits, leading to satisfactory detection results of AFP in clinical blood samples.