Login / Signup

Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes.

Samuel Suárez-PantigaRoberto Sanz
Published in: Organic & biomolecular chemistry (2021)
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Keyphrases
  • decision making
  • crystal structure
  • metal organic framework