Detrimental effects of transient cerebral ischemia on middle cerebral artery mitochondria in female rats.
Ibolya RutkaiIvan MerdzoSanjay WunnavaCatherine McNultyPartha K ChandraPrasad V KatakamDavid W BusijaPublished in: American journal of physiology. Heart and circulatory physiology (2022)
Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied. To address this disparity, we conducted morphological, biochemical, and functional studies using electron microscopy, Western blot, mitochondrial respiration, and Ca 2+ sparks activity measurements in MCAs of female, naïve or sham Sprague-Dawley rats before and 48 h after 90 min of tMCAO. Adverse changes in mitochondrial characteristics and the relationship between mitochondria and sarcoplasmic reticulum (SR) in MCAs were present on both sides. However, mitochondria and mitochondrial/SR associations were often within the range of normal appearance. Mitochondrial protein levels were similar between ipsilateral (ipsi) and contralateral (contra) sides. Nonrespiratory oxygen consumption, maximal respiration, and spare respiratory capacity were similar between ipsi and contra but were reduced compared with sham. Basal respiration, proton leak, and ATP production were similar among MCAs. Ca 2+ sparks activity increased in sham and ipsi MCAs exposed to a mitochondrial ATP-sensitive potassium channel opener: diazoxide. Our results show that tMCAO has effects on mitochondria in MCAs on both the ipsi and contra sides. Mitochondrial responses of cerebral arteries to tMCAO in females are substantially different from responses seen previously in male rats suggesting the need for specific sex-based therapies. NEW & NOTEWORTHY We propose that differences in mitochondrial characteristics of males and females, including mitochondrial morphology, respiration, and calcium sparks activity contribute to sex differences in protective and repair mechanisms in response to transient ischemia-reperfusion.