The discovery of new targets and lead compounds is the key to developing new pesticides. The herbicidal target of drupacine has been identified as shikimate dehydrogenase (SkDH). However, the mechanism of interaction between them remains unclear. This study found that drupacine specifically binds to SkDH with a dissociation equilibrium constant (K D ) of 8.88 μM and a K d value of 2.15 μM, as confirmed by surface plasmon resonance and microscale thermophoresis. Site-directed mutagenesis coupled with fluorescence quenching analysis indicated that residue THR431 was the key amino acid site for drupacine binding to SkDH. Nine compounds with the best binding ability to SkDH were identified by virtual screening from about 120,000 compounds. Among them, compound 8 showed the highest inhibition rate with values of 41.95% against SkDH, also exhibiting the strongest herbicidal activity. This research identifies a novel potential target SkDH and a candidate lead compound with high herbicidal activity for developing new herbicides.