Login / Signup

Facile Synthesis of Robust and Pore-Size-Tunable Nanoporous Covalent Framework Membrane by Simultaneous Gelation and Phase Separation of Covalent Network/Poly(methyl methacrylate) Mixture.

Wangsuk OhJi-Woong Park
Published in: ACS applied materials & interfaces (2019)
We report a facile route toward the preparation of organic-solvent-resistant and three-dimensionally continuous nanoporous covalent framework membrane. The membrane was prepared from the blend of linear poly(methyl methacrylate) and the cross-linked polyurea-based organic network, followed by selective removal of the linear polymer part. The pore morphologies, porosity, and solvent permeation properties of the membrane could be simply modified by the initial composition of the poly(methyl methacrylate) added to a sol of the organic network. The pore was three-dimensionally continuous with pore size ranging from 5 nm to tens of nanometers. Despite the broad pore size distribution, ultrafiltration of sub-10 nm solutes was realized with a molecular size cutoff near 5 nm thanks to the bicontinuous pore structure of the membrane. The nanoporous structure exhibited long-term resistance to organic solvents as well as thermal stability and mechanical strength. The separation performance remained unchanged in organic-rich medium for a prolonged time. Our strategy provides a synthetic route to a structurally robust, three-dimensionally continuous nanoporous polymeric membrane for potential application that necessitates the use of organic solvent.
Keyphrases
  • water soluble
  • ionic liquid
  • photodynamic therapy
  • risk assessment
  • single molecule
  • high resolution
  • human health
  • highly efficient
  • solar cells