Login / Signup

Multiple Bonding in Rhodium Monoboride. Quasi-atomic Analyses of the Ground and Low-Lying Excited States.

George SchoendorffKlaus RuedenbergMark S Gordon
Published in: The journal of physical chemistry. A (2021)
The bonding structures of the ground state and the lowest five excited states of rhodium monoboride are identified by determining the quasi-atomic orbitals in full valence space MCSCF wave functions and the interactions between these orbitals. A quadruple bond, namely two π-bonds and two σ-bonds, is identified and characterized for the X1Σ+ ground state, in agreement with a previous report (Cheung J. Phys. Chem. Lett. 2020, 11, 659-663). However, in all excited states, the bonding is predicted to be weaker because, in these states, one of the σ-bonding interactions has a small magnitude. In the a3Δ and A1Δ states, the bond order is between a triple and quadruple bond. In the b3Σ+ state, the Rh-B linkage is a triple bond. In the c3Π and B1Π states, the atoms are linked by a double bond due to an additional weakening of the two π-bonds. The decreases in the predicted bond strengths are reflected in the decreases of the predicted binding energies and in the increases of the predicted bond lengths from the X1Σ+ ground state to the c3Π and the B1Π excited states. Notably, the 5pσ orbital of rhodium, which is vacant in the ground state of the atom, plays a significant role in the molecule.
Keyphrases