Proteomic analysis identifies the E3 ubiquitin ligase Pdzrn3 as a regulatory target of Wnt5a-Ror signaling.
Sara E Konopelski SnavelyMichael W SusmanRyan C KunzJia TanSrisathya SrinivasanMichael D CohenKyoko OkadaHelen LambShannon S ChoiEdith P KarunaMichael K ScalesSteven P GygiMichael Eldon GreenbergHsin-Yi Henry HoPublished in: Proceedings of the National Academy of Sciences of the United States of America (2021)
Wnt5a-Ror signaling is a conserved pathway that regulates morphogenetic processes during vertebrate development [R. T. Moon et al, Development 119, 97-111 (1993); I. Oishi et al, Genes Cells 8, 645-654 (2003)], but its downstream signaling events remain poorly understood. Through a large-scale proteomic screen in mouse embryonic fibroblasts, we identified the E3 ubiquitin ligase Pdzrn3 as a regulatory target of the Wnt5a-Ror pathway. Upon pathway activation, Pdzrn3 is degraded in a β-catenin-independent, ubiquitin-proteasome system-dependent manner. We developed a flow cytometry-based reporter to monitor Pdzrn3 abundance and delineated a signaling cascade involving Frizzled, Dishevelled, Casein kinase 1, and Glycogen synthase kinase 3 that regulates Pdzrn3 stability. Epistatically, Pdzrn3 is regulated independently of Kif26b, another Wnt5a-Ror effector. Wnt5a-dependent degradation of Pdzrn3 requires phosphorylation of three conserved amino acids within its C-terminal LNX3H domain [M. Flynn, O. Saha, P. Young, BMC Evol. Biol. 11, 235 (2011)], which acts as a bona fide Wnt5a-responsive element. Importantly, this phospho-dependent degradation is essential for Wnt5a-Ror modulation of cell migration. Collectively, this work establishes a Wnt5a-Ror cell morphogenetic cascade involving Pdzrn3 phosphorylation and degradation.