Login / Signup

Vibronic structure and predissociation dynamics of 2-methoxythiophenol (S1): The effect of intramolecular hydrogen bonding on nonadiabatic dynamics.

Jean Sun LimHyun Sik YouSo-Yeon KimJunggil KimYoung Choon ParkSang Kyu Kim
Published in: The Journal of chemical physics (2020)
Vibronic spectroscopy and the S-H bond predissociation dynamics of 2-methoxythiophenol (2-MTP) in the S1 (ππ*) state have been investigated for the first time. Resonant two-photon ionization and slow-electron velocity map imaging (SEVI) spectroscopies have revealed that the S1-S0 transition of 2-MTP is accompanied with the planar to the pseudoplanar structural change along the out-of-plane ring distortion and the tilt of the methoxy moiety. The S1 vibronic bands up to their internal energy of ∼1000 cm-1 are assigned from the SEVI spectra taken via various S1 vibronic intermediate states with the aid of ab initio calculations. Intriguingly, Fermi resonances have been identified for some vibronic bands. The S-H bond breakage of 2-MTP occurs via tunneling through an adiabatic barrier under the S1/S2 conical intersection seam, and it is followed by the bifurcation into either the adiabatic or nonadiabatic channel at the S0/S2 conical intersection where the diabatic S2 state (πσ*) is unbound with respect to the S-H bond elongation coordinate, giving the excited (Ã) or ground (X̃) state of the 2-methoxythiophenoxy radical, respectively. Surprisingly, the nonadiabatic transition probability at the S0/S2 conical intersection, estimated from the velocity map ion images of the nascent D fragment from 2-MTP-d1 (2-CH3O-C6H4SD) at the S1 zero-point energy level, is found to be exceptionally high to give the X̃/Ã product branching ratio of 2.03 ± 0.20, which is much higher than the value of ∼0.8 estimated for the bare thiophenol at the S1 origin. It even increases to 2.33 ± 0.17 at the ν45 2 mode (101 cm-1) before it rapidly decays to 0.69 ± 0.05 at the S1 internal energy of about 2200 cm-1. This suggests that the strong intramolecular hydrogen bonding of S⋯D⋯OCH3 in 2-MTP at least in the low S1 internal energy region should play a significant role in localizing the reactive flux onto the conical intersection seam. The minimum energy pathway calculations (second-order coupled-cluster resolution of the identity or time-dependent-density functional theory) of the adiabatic S1 state suggest that the intimate dynamic interplay between the S-H bond cleavage and intramolecular hydrogen bonding could be crucial in the nonadiabatic surface hopping dynamics taking place at the conical intersection.
Keyphrases