Intercellular communication is indispensable across multicellular organisms, and any aberration in this process can give rise to significant anomalies in developmental and homeostatic processes. Thus, a comprehensive understanding of its mechanisms is imperative for addressing human health-related concerns. Recent advances have expanded our understanding of intercellular communication by elucidating additional signaling modalities alongside established mechanisms. Notably, cellular protrusion-mediated long-range communication, characterized by physical contact through thin and elongated cellular protrusions between cells involved in signal transmission and reception, has emerged as a significant intercellular signaling paradigm. This chapter delves into the exploration of a signaling cellular protrusion termed 'airinemes,' discovered in the zebrafish skin. It covers their identified signaling roles and the cellular and molecular mechanisms that underpin their functionality.