Login / Signup

Sweet Side Streams: Sugar Beet Pulp as Source for High-Performance Supercapacitor Electrodes.

Julian SelingerKristoffer MeinanderBenjamin P WilsonQamar AbbasMichael HummelStefan Spirk
Published in: ACS omega (2024)
Valorization of the lignocellulosic side and waste streams is key to making industrial processes more efficient from both an economic and ecological perspective. Currently, the production of sugars from beets results in pulps in large quantities. However, there is a lack of promising opportunities for upcycling these materials despite their promising properties. Here, we investigate beet pulps from two different stages of the sugar manufacturing process as raw materials for supercapacitor electrodes. We demonstrate that these materials can be efficiently converted to activated, highly porous carbons. The carbons exhibit pore dimensions approaching the size of the desolvated K + and SO 4 2- ions with surface areas up to 2600 m 2 g -1 . These carbons were subsequently manufactured into electrodes, assembled in supercapacitors, and tested with environmentally friendly aqueous electrolytes (6 M KOH and 1 M H 2 SO 4 ). Further analysis demonstrated the presence of capacitance-enhancing functionalities, and up to 193 and 177 F g -1 in H 2 SO 4 and KOH, respectively, were achieved, which outperformed supercapacitors prepared from commercial YP80 F. Overall, our study suggests that side streams from sugar manufacturing offer a hidden potential for use in high-performance energy storage devices.
Keyphrases
  • solid state
  • reduced graphene oxide
  • gold nanoparticles
  • heavy metals
  • ionic liquid
  • human health
  • wastewater treatment
  • climate change
  • quantum dots
  • life cycle
  • sewage sludge
  • aqueous solution