Login / Signup

Entanglement of propagating optical modes via a mechanical interface.

Junxin ChenMassimiliano RossiDavid MasonAlbert Schliesser
Published in: Nature communications (2020)
Many applications of quantum information processing (QIP) require distribution of quantum states in networks, both within and between distant nodes. Optical quantum states are uniquely suited for this purpose, as they propagate with ultralow attenuation and are resilient to ubiquitous thermal noise. Mechanical systems are then envisioned as versatile interfaces between photons and a variety of solid-state QIP platforms. Here, we demonstrate a key step towards this vision, and generate entanglement between two propagating optical modes, by coupling them to the same, cryogenic mechanical system. The entanglement persists at room temperature, where we verify the inseparability of the bipartite state and fully characterize its logarithmic negativity by homodyne tomography. We detect, without any corrections, correlations corresponding to a logarithmic negativity of EN = 0.35. Combined with quantum interfaces between mechanical systems and solid-state qubit processors, this paves the way for mechanical systems enabling long-distance quantum information networking over optical fiber networks.
Keyphrases
  • solid state
  • room temperature
  • molecular dynamics
  • high resolution
  • high speed
  • energy transfer
  • monte carlo
  • lymph node
  • health information
  • healthcare
  • neoadjuvant chemotherapy
  • locally advanced
  • electron microscopy