In Situ Optical and Stress Characterization of Alloyed PdxAu1-x Hydrides.
Kevin J PalmJoseph B MurrayJoshua P McClureMarina S LeiteJeremy N MundayPublished in: ACS applied materials & interfaces (2019)
PdxAu1-x alloys have recently shown great promise for next-generation optical hydrogen sensors due to their increased chemical durability while their optical sensitivity to small amounts of hydrogen gas is maintained. However, the correlation between chemical composition and the dynamic optical behavior upon hydrogenation/dehydrogenation is currently not well understood. A complete understanding of this relation is necessary to optimize future sensors and nanophotonic devices. Here, we quantify the dynamic optical, chemical, and mechanical properties of thin film PdxAu1-x alloys as they are exposed to H2 by combining in situ ellipsometry with gravimetric and stress measurements. We demonstrate the dynamic optical property dependence of the film upon hydrogenation and directly correlate it with the hydrogen content up to a maximum of 7 bar of H2. With this measurement, we find that the thin films exhibit their strongest optical sensitivity to H2 in the near-infrared. We also discover higher hydrogen-loading amounts as compared to previous measurements for alloys with low atomic percent Pd. Specifically, a measurable optical and gravimetric hydrogen response in alloys as low as 34% Pd is found, when previous works have suggested a disappearance of this response near 55% Pd. This result suggests that differences in film stress and microstructuring play a crucial role in the sorption behavior. We directly measure the thin film stress and morphology upon hydrogenation and show that the alloys have a substantially higher relative stress change than pure Pd, with the pure Pd data point falling 0.9 GPa below the expected trend line. Finally, we use the measured optical properties to illustrate the applicability of these alloys as grating structures and as a planar physical encryption scheme, where we show significant and variable changes in reflectivity upon hydrogenation. These results lay the foundation for the composition and design of next-generation hydrogen sensors and tunable photonic devices.