The effects of partially or fully linked boron with a cross-linking structure of an organic precursor on the purity and morphology of ZrB 2 powder.
Xi YangWeijian HanTong ZhaoRuixing LiPublished in: RSC advances (2024)
From a chemical infrastructure perspective, it is important to ensure that all ions constituting a target product, e.g. , Zr and B ions for ZrB 2 , are fully linked with a cross-linking structure for synthesis via an organic precursor. In the present study, glycerol is used as a chelating ligand to prepare boron both partially and fully linked with the cross-linking structure of organic precursors by a sol-gel route. The results are far from expected, in that the more linked boron there is in the precursor, the purer the ZrB 2 produced. In the case of a partially linked cross-linking structure, the carbothermic reduction reaction for ZrB 2 is a multi-step process with an intermediary phase of ZrC, and then a high-purity prism-like ZrB 2 powder with a larger size is obtained. A minimum of 0.26 wt% for the oxygen content of ZrB 2 corresponds to a 0.67 molar ratio of glycerol to H 3 BO 3 . On the other hand, in the case with the boron fully linked, a single-phase of ZrB 2 cannot be obtained, and instead a double-phase is obtained. Therefore, the amount of impurity is greater, even though the size is smaller. The carbothermic reduction reaction is direct, and has only one step.