Login / Signup

High-intensity training in normobaric hypoxia enhances exercise performance and aerobic capacity in Thoroughbred horses: A randomized crossover study.

Kazutaka MukaiHajime OhmuraAkira MatsuiHiroko AidaToshiyuki TakahashiJames H Jones
Published in: Physiological reports (2021)
We examined the effects of high-intensity training in normobaric hypoxia on aerobic capacity and exercise performance in horses and the individual response to normoxic and hypoxic training. Eight untrained horses were studied in a randomized, crossover design after training in hypoxia (HYP; 15.0% inspired O2 ) or normoxia (NOR; 20.9% inspired O2 ) 3 days/week for 4 weeks separated by a 4-month washout period. Before and after each training period, incremental treadmill exercise tests were performed in normoxia. Each training session consisted of 1 min cantering at 7 m/s and 2 min galloping at the speed determined to elicit maximal oxygen consumption ( V ˙ O2 max) in normoxia. Hypoxia increased significantly more than NOR in run time to exhaustion (HYP, +28.4%; NOR, +10.4%, p = .001), V ˙ O2 max (HYP, +12.1%; NOR, +2.6%, p = .042), cardiac output ( Q ˙ ; HYP, +11.3%; NOR, -1.7%, p = .019), and stroke volume (SV) at exhaustion (HYP, +5.4%; NOR, -5.5%, p = .035) after training. No significant correlations were observed between NOR and HYP for individual changes after training in run time (p = .21), V ˙ O2 max (p = .99), Q ˙ (p = .19), and SV (p = .46) at exhaustion. Arterial O2 saturation during exercise in HYP was positively correlated with the changes in run time (r = .85, p = .0073), Q ˙ (r = .72, p = .043) and SV (r = .77, p = .026) of HYP after training, whereas there were no correlations between these parameters in NOR. These results suggest that high-intensity training in normobaric hypoxia improved exercise performance and aerobic capacity of horses to a greater extent than the same training protocol in normoxia, and the severity of hypoxemia during hypoxic exercise might be too stressful for poor responders to hypoxic training.
Keyphrases
  • high intensity
  • resistance training
  • virtual reality
  • endothelial cells
  • physical activity
  • body composition
  • left ventricular
  • brain injury