Login / Signup

Converting Bulk Sugars into Functional Fibers: Discovery and Application of a Thermostable β-1,3-Oligoglucan Phosphorylase.

Marc De DonckerSofie VleminckxJorick FranceusRonny VercauterenTom Desmet
Published in: Journal of agricultural and food chemistry (2024)
Despite their broad application potential, the widespread use of β-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of β-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of β-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable β-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila ( At βOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass β-1,3-glucans up to DP 75. Coupling of At βOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable β-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into β-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.
Keyphrases
  • small molecule
  • high throughput
  • blood glucose
  • type diabetes
  • blood pressure
  • amino acid
  • adipose tissue
  • single cell
  • structural basis