Login / Signup

Dynamic evaluation of a trilobal capillary-channeled polymer fiber shape for reversed phase protein separations and comparison to the eight-channeled form.

Lei WangKathryn A StevensPaul Haupt-RenaudRichard Kenneth Marcus
Published in: Journal of separation science (2018)
A new, trilobal-shaped capillary-channeled polymer fiber is under development to address the issues of poor A-term performance of the previous eight-channeled form. The trilobal geometry should provide better packing homogeneity due to the fewer potential orientations of the symmetric fiber geometry. Comparisons of separation efficiency and peak shape were made between the two fiber shapes through several dynamic parameters. Column hydrodynamics were investigated with two marker compounds, uracil and bovine serum albumin, with van Deemter plots of those two compounds revealing differences in the packing qualities between the different fiber shapes. Parametric fitting to the van Deemter, Knox, and Giddings equations provides insights into the column physical structures. Separation quality for both shapes was evaluated across differences in fiber packing density, gradient rate, and mobile phase linear velocity for the reversed phase separation of a four protein mixture, containing ribonuclease A, cytochrome c, lysozyme, and myoglobin. The results of this study lay the ground work for future efforts in the use of trilobal fibers for the separation of biomacromolecules.
Keyphrases