Data-Driven Modeling Approach for Pore Pressure Gradient Prediction while Drilling from Drilling Parameters.
Ahmed AbdelaalSalaheldin ElkatatnyAbdulazeez AbdulraheemPublished in: ACS omega (2021)
Real-time prediction of the formation pressure gradient is critical mainly for drilling operations. It can enhance the quality of decisions taken and the economics of drilling operations. The pressure while drilling tool can be used to provide pressure data while drilling, but the tool cost and its availability limit its usage in many wells. The available models in the literature for pressure gradient prediction are based on well logging or a combination of some drilling parameters and well logging. The well-logging data are not available for all wells in all sections in most wells. The objective of this paper is to use support vector machines, functional networks, and random forest (RF) to develop three models for real-time pore pressure gradient prediction using both mechanical and hydraulic drilling parameters. The used parameters are mud flow rate (Q), standpipe pressure, rate of penetration, and rotary speed (RS). A data set of 3239 field data points was used to develop the predictive models. A different data set unseen by the model was utilized for the validation of the proposed models. The three models predicted the pore pressure gradient with a correlation coefficient (R) of 0.99 and 0.97 for training and testing, respectively. The root-mean-squared error (RMSE) ranged from 0.008 to 0.021 psi/ft for training and testing, respectively, between the predicted and the actual pore pressure data. Moreover, the average absolute percentage error (AAPE) ranged from 0.97% to 3.07% for training and testing, respectively. The RF model outperformed the other models by an R of 0.99 and RMSE of 0.01. The developed models were validated using another data set. The models predicted the pore pressure gradient for the validation data set with high accuracy (R of 0.99, RMSE around 0.01, and AAPE around 1.8%). This work shows the reliability of the developed models to predict the pressure gradient from both mechanical and hydraulic drilling parameters while drilling.