Genomic characteristics and pathogenicity of a new recombinant strain of porcine reproductive and respiratory syndrome virus.
Yang LiGaoxiao XuXingqian DuLele XuZhiqian MaZhiwei LiYingtong FengDian JiaoWenping GuoShuqi XiaoPublished in: Archives of virology (2021)
Recombination is an important phenomenon that accelerates evolution and enriches the genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV). Recombinant PRRSV isolates sometimes have different genetic backgrounds. In this study, we report a recombinant PRRSV (SD-YL1712) isolated from a pig farm. The genome of SD-YL1712 is 15,014 nucleotides in length, and its nucleotide and amino acid sequence conservation is higher than that of PRRSV strain JXA1 except within the NSP2 region. The NSP2 region of SDYL1712 shares the highest nucleotide (85.9%) and amino acid (84.1%) sequence identity with PRRSV strain NADC30. SD-YL1712 was found to contain a characteristic 131-amino-acid deletion in the NSP2 region. Two recombination breakpoints were detected at nt 2134 and nt 3958 within the NSP2 region, which revealed that SD-YL1712 originated from a recombination event between NADC30-like and HP-PRRSV-derived MLV-like strains. Interestingly, SD-YL1712 had an additional deletion at position 586, similar to that found in strain TJnh1501. Moreover, the pathogenicity of strain SD-YL1712 was found to be similar to that of HP-PRRSV JXA1, which was higher than that of the CH1a strain. Further analysis indicated that SD-YL1712 might be a transitional intermediate in the evolution of TJbd1401 to TJnh1501.