Impurities in Polymer-Lined Autoclaves Affect Zeolite Synthesis and Si Incorporation Behavior.
Xutao ChenYue WangLiping XiaoShihui ZouJie FanPublished in: The journal of physical chemistry letters (2024)
Polymer-lined autoclaves are commonly believed to be highly durable and inert in hydrothermal reactions. Herein, we use the hydrothermal synthesis of AlPO-18 zeolite as a case study to demonstrate that the choice of autoclave materials (polytetrafluoroethylene or para-polyphenylene) does significantly affect the product of zeolite synthesis. A small amount of glass fiber in the PPL-lined autoclave unexpectedly functions as a source of silicon and yields SAPO-34 instead of AlPO-18 as the product. The outcomes of 19 successive experiments conducted with a single PPL-lined autoclave exhibit significant variations, further highlighting that the impurities arising from the autoclaves should be considered during the hydrothermal synthesis procedure. In contrast to SAPO-34 synthesized by the conventional method, which displays only Si(4Al) at a low Si/Al ratio, SAPO-34 synthesized in the PPL-lined autoclave exhibits multiple silicon coordination environments. This outcome provides new physical insights into the silicon incorporation mechanism and proposes a viable strategy for regulating the silicon coordination environment at low Si/Al ratios.