Login / Signup

In silico toxicity prediction, molecular docking studies and in vitro validation of antibacterial potential of alkaloids from Eclipta alba in designing of novel antimicrobial therapeutic strategies.

Fuad AmeenRaha OrfaliEstari MamidalaRakesh Davella
Published in: Biotechnology & genetic engineering reviews (2022)
The rapid emergence of various drug resistance and unfavourable aliphatic medication side effects endangers people's health. Phytocompounds with antibacterial activity and less harmful effects are known to be present in medicinal plants. Alkaloids from Eclipta alba were tested for their in vitro antibacterial capabilities and in silico docking studies against pathogenic bacteria and their target proteins in the current investigation. The alkaloid compounds verazine, ecliptine, 4-hydroxyverazine, 20-Epi-4beta-hydroxyverazine and hydroxyverazine were subjected to molecular docking studies to determine the method of binding as well as potential interactions and the docking score. The in vitro antibacterial activity of verazine alkaloid was assessed against two gram-positive and two gram-negative bacteria. Verazine alkaloid has the best inhibitory ability against DNA gyrase of E. coli (ΔG= -8.44 kcal/mol) and dihydrofolate reductase (DHFR) of S. aureus ( ΔG= -10.04 kcal/mol), according to docking studies. Verazine shown substantial in vitro antibacterial activity in this investigation against all test bacteria, with MIC and MBC values of 31.25 and 62.50 µg/mL for S. aureus and 15.63 and 31.25 µg/mL for B. cereus , respectively. The results of this work highlighted the value of unique alkaloid compounds from E. alba , which may offer effective antibacterial agents and DNA gyrase, DHFR inhibitors due to their novel structural properties capable of combating antimicrobial resistance. These findings call for more investigation into the compounds' function as antibacterial agents, as well as their unique-binding locations and mechanisms.
Keyphrases