Login / Signup

Evaluation of take-home exposure to asbestos from handling asbestos-contaminated worker clothing following the abrasive sawing of cement pipe.

Anders AbelmannJoshua R MaskreyJason T LotterAaron M ChapmanMelanie D NembhardJennifer S PierceJohn M WilmothRichard J LeeDennis J Paustenbach
Published in: Inhalation toxicology (2018)
Although industrial uses of asbestos have declined since the 1970s, in recent years there has been a renewed interest in para-occupational ("take-home") exposure to these fibers. The aim of this study was to quantify the release of asbestos fibers, if any, during the shaking out of crocidolite- and chrysotile-contaminated clothing in a simulated at-home setting. An exposure study was conducted in which personal and area air samples were collected during the handling (i.e. shake-out) of work clothing (shirt and pants) previously worn by an operator who had cut asbestos-containing cement pipe. During eight "loading" events, the operator cut a historically representative asbestos-containing cement pipe (10% crocidolite and 25% chrysotile) using a powered abrasive saw. Subsequently, 30-minute air samples were collected during four "shake-out" events, each of which consisted of the handling of two complete sets of contaminated work clothes. Samples were analyzed in accordance with NIOSH methods 7400 and 7402. The mean phase contrast microscopy equivalent (PCME) airborne concentrations were 0.52 f/cc (SD = 0.34 f/cc) for total asbestos fibers, 0.36 f/cc (SD = 0.26 f/cc) for chrysotile and 0.17 f/cc (SD = 0.096 f/cc) for crocidolite. Based on likely estimates of the frequency of laundering activities, and assuming that the dusty clothing (1) is not blown off in the occupational setting using compressed air and (2) is not shaken out before entering the home, a family member handling the clothing could potentially have a lifetime cumulative exposure to chrysotile and crocidolite of approximately 0.20 f/cc-year and 0.096 f/cc-year, respectively.
Keyphrases
  • heavy metals
  • healthcare
  • drinking water
  • magnetic resonance imaging
  • high resolution
  • wastewater treatment
  • single molecule
  • optical coherence tomography
  • mass spectrometry
  • single cell