Login / Signup

Massive red shift of Ce 3+ in Y 3 Al 5 O 12 incorporating super-high content of Ce.

Hitomi NakamuraKenji ShinozakiToyoki OkumuraKatsuhiro NomuraTomoko Akai
Published in: RSC advances (2020)
In light emitting diodes, Y 3 Al 5 O 12 :Ce (YAG:Ce) is used as a yellow phosphor in combination with blue LEDs but lacks a red component in emission. Therefore, considerable efforts have been directed toward shifting the emission of YAG:Ce to longer wavelengths. In this study, a Y 3 Al 5 O 12 (YAG) crystal incorporating a high content of Ce, (Y 1- x Ce x ) 3 Al 5 O 12 (0.006 ≦ x ≦ 0.21), was successfully prepared by a polymerized complex method in which low-temperature annealing (650-750 °C) was employed prior to sintering at 1080 °C. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the obtained sample was a single phase YAG crystal with x ≤ 0.21. Interestingly, orange-red emission was observed with x ≥ 0.07 with UV-blue light irradiation. With excitation at 450 nm, the emission peak increases from 538 nm ( x = 0.006) to 606 nm ( x = 0.21). This massive red shift in the high- x region was not observed without the 1 st step of low-temperature annealing, which implied that low-temperature annealing was essential for incorporating a high concentration of Ce. The precursor formed by low-temperature annealing was amorphous at x = 0.04, whereas CeO 2 nanocrystals were formed in the amorphous material with x ≥ 0.11, based on the XRD and TEM results. CeL III X-ray absorption edge structure revealed that Ce existed as Ce 4+ in the precursor and Ce 3+ in the obtained crystal. It was speculated that CeO 2 was formed at low temperature, releasing oxygen, with sintering at 1080 °C, leading to the incorporation of Y 3+ in the Ce-O framework. The lattice constant increased significantly from 12.024 Å to 12.105 Å with increasing x , but the crystal field splitting did not increase and was constant from x = 0.06 to x = 0.21. Hence, the massive red shift in emission was not explained by the large crystal field splitting, but instead by the Stokes shift.
Keyphrases
  • energy transfer
  • solid state
  • electron microscopy
  • photodynamic therapy
  • quantum dots
  • computed tomography
  • mass spectrometry
  • magnetic resonance
  • light emitting
  • single cell
  • dual energy