Biodegradable PLGA-b-PEG Nanoparticles Induce T Helper 2 (Th2) Immune Responses and Sustained Antibody Titers via TLR9 Stimulation.
Kirsty L WilsonGregory P HowardHeather CoatsworthRhoel R DinglasanHai-Quan MaoMagdalena PlebanskiPublished in: Vaccines (2020)
Sustained immune responses, particularly antibody responses, are key for protection against many endemic infectious diseases. Antibody responses are often accompanied by T helper (Th) cell immunity. Herein we study small biodegradable poly (ethylene glycol)-b-poly (lactic-co-glycolic acid) nanoparticles (PEG-b-PLGA NPs, 25-50 nm) as antigen- or adjuvant-carriers. The antigen carrier function of PEG-b-PLGA NPs was compared against an experimental benchmark polystyrene nanoparticles (PS NPs, 40-50 nm), both conjugated with the model antigen ovalbumin (OVA-PS NPs, and OVA-PEG-b-PLGA NPs). The OVA-PEG-b-PLGA NPs induced sustained antibody responses to Day 120 after two immunizations. The OVA-PEG-b-PLGA NPs as a self-adjuvanting vaccine further induced IL-4 producing T-helper cells (Th2), but not IFN-γ producing T-cells (Th1). The PEG-b-PLGA NPs as a carrier for CpG adjuvant (CpG-PEG-b-PLGA NPs) were also tested as mix-in vaccine adjuvants comparatively for protein antigens, or for protein-conjugated to PS NPs or to PEG-b-PLGA NPs. While the addition of this adjuvant NP did not further increase T-cell responses, it improved the consistency of antibody responses across all immunization groups. Together these data support further development of PEG-b-PLGA NPs as a vaccine carrier, particularly where it is desired to induce Th2 immunity and achieve sustained antibody titers in the absence of affecting Th1 immunity.
Keyphrases
- drug delivery
- drug release
- immune response
- oxide nanoparticles
- dendritic cells
- early stage
- bone regeneration
- photodynamic therapy
- stem cells
- infectious diseases
- regulatory t cells
- machine learning
- diabetic rats
- inflammatory response
- oxidative stress
- cell death
- gene expression
- induced apoptosis
- single cell
- artificial intelligence
- cell therapy
- big data
- endoplasmic reticulum stress
- cell cycle arrest