Login / Signup

Snapping for 4D-Printed Insect-Scale Metal-Jumper.

Yang YangYongquan Wang
Published in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2023)
The replication of jumping motions observed in small organisms poses a significant challenge due to size-related effects. Shape memory alloys (SMAs) exhibit a superior work-to-weight ratio, making them suitable for jumping actuators. However, the SMAs advantages are hindered by the limitations imposed by their single actuator configuration and slow response speed. This study proposes a novel design approach for an insect-scale shape memory alloy jumper (net-shell) using 4D printing technology and the bistable power amplification mechanism. The energy variations of the SMA net-shell under different states and loads are qualitatively elucidated through a spring-mass model. To optimize the performance of the SMA net-shell, a non-contact photo-driven technique is employed to induce its shape transition. Experimental investigations explore the deformation response, energy release of the net-shell, and the relationship between the light power density. The results demonstrate that the SMA net-shell exhibits remarkable jumping capabilities, achieving a jump height of 60 body lengths and takeoff speeds of up to 300 body lengths per second. Furthermore, two illustrative cases highlight the potential of net-shells for applications in unstructured terrains. This research contributes to miniaturized jumping mechanisms by providing a new design approach integrating smart materials and advanced structures.
Keyphrases
  • body mass index
  • working memory
  • high resolution
  • weight gain
  • multidrug resistant
  • zika virus