Login / Signup

Triple ionization of HCl via states with a 2p core hole.

J H D ElandRaimund Feifel
Published in: The Journal of chemical physics (2019)
The triple ionization of HCl by double Auger decay and related processes has been studied using a multiparticle coincidence technique combined with synchrotron radiation. Four contributing processes are identified; direct double Auger, two indirect double Auger decay pathways, and single Auger decay from core-valence doubly ionized intermediate states. One indirect Auger process involves autoionization from superexcited states of Cl+. Double Auger decay from HCl+ (2p-1, 2PJ), which makes up 11% ± 2% of total Auger decay, is estimated to be 40% direct, 15% indirect via atomic Cl+* and 45% indirect via molecular intermediate doubly ionized states. The vertical triple ionization energy of HCl is determined as 73.8 ± 0.5 eV. Molecular field effects are found to affect the direct double Auger process as well as normal single Auger decay. A comparison between spectra of the HCl and DCl isotopomers indicates that electronic decay is faster in all the processes than molecular dissociation.
Keyphrases
  • single molecule
  • radiation therapy
  • gas chromatography
  • mass spectrometry
  • high resolution
  • simultaneous determination