Login / Signup

In vivo characterization of laser-assisted delivery of hyaluronic acid using multiphoton fluorescence lifetime imaging.

Lynhda NguyenChristian MessStefan W SchneiderVolker HuckKatharina Herberger
Published in: Experimental dermatology (2023)
Laser-assisted drug delivery (LADD) is a treatment method to enhance the penetration of pharmaceuticals through the skin. The aim of the present study is to track hyaluronic acid (HA) and analyse its effect on human skin in vivo after ablative fractional laser (AFL) treatment. Healthy male and female subjects were recruited. Four areas were marked on their forearms of each volunteer, and each area was assigned to one of the following treatment options: AFL + HA, AFL only, HA only or untreated control. A carbon dioxide laser was used for the AFL treatment. Follow-up measurements were scheduled 30 min and 30 days after treatment using multiphoton tomography equipped with fluorescence lifetime imaging (MPT-FLIM). A total of 11 subjects completed the study. By detecting fluorescence lifetimes, the HA and the anaesthetic ointment were clearly distinguishable from surrounding tissue. After AFL treatment, HA could be visualized in all epidermal and upper dermal layers. In contrast, HA in intact skin was only detected in the superficial layers at distinctly lower levels. The applied HA gel seemed to have beneficial properties for the wound healing process after laser treatment. LADD has proven to be a fast and effective method to increase HA uptake into the skin, allowing for improved hydration and skin rejuvenation over time. Furthermore, LADD could be a beneficial treatment option in laser resurfacing. MPT-FLIM proved to be an appropriate diagnostic tool for drug delivery tracking and monitoring of treatment response for individualized therapy adjustment.
Keyphrases
  • wound healing
  • drug delivery
  • magnetic resonance
  • carbon dioxide
  • magnetic resonance imaging
  • high speed
  • computed tomography
  • mesenchymal stem cells
  • soft tissue
  • platelet rich plasma
  • cell therapy