Login / Signup

Click Nucleophilic Conjugate Additions to Activated Alkynes: Exploring Thiol-yne, Amino-yne, and Hydroxyl-yne Reactions from (Bio)Organic to Polymer Chemistry.

Joshua C WorchConnor J StubbsMatthew J PriceAndrew P Dove
Published in: Chemical reviews (2021)
The 1,4-conjugate addition reaction between activated alkynes or acetylenic Michael acceptors and nucleophiles (i.e., the nucleophilic Michael reaction) is a historically useful organic transformation. Despite its general utility, the efficiency and outcomes can vary widely and are often closely dependent upon specific reaction conditions. Nevertheless, with improvements in reaction design, including catalyst development and an expansion of the substrate scope to feature more electrophilic alkynes, many examples now present with features that are congruent with Click chemistry. Although several nucleophilic species can participate in these conjugate additions, ubiquitous nucleophiles such as thiols, amines, and alcohols are commonly employed and, consequently, among the most well developed. For many years, these conjugate additions were largely relegated to organic chemistry, but in the last few decades their use has expanded into other spheres such as bioorganic chemistry and polymer chemistry. Within these fields, they have been particularly useful for bioconjugation reactions and step-growth polymerizations, respectively, due to their excellent efficiency, orthogonality, and ambient reactivity. The reaction is expected to feature in increasingly divergent application settings as it continues to emerge as a Click reaction.
Keyphrases
  • cancer therapy
  • machine learning
  • air pollution
  • type diabetes
  • particulate matter
  • drug delivery
  • adipose tissue
  • ionic liquid
  • reduced graphene oxide