Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers-Cobalt Phthalocyanine-Laccase for the Detection of p-Coumaric Acid in Phytoproducts.
Alexandra Virginia BounegruConstantin ApetreiPublished in: International journal of molecular sciences (2021)
The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor's response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1-202.5 μM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4-6.4 μM and stood out by low LOD and LOQ values, i.e., 4.83 × 10-7 M and 1.61 × 10-6 M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method.