Active pH regulation facilitates Bacillus subtilis biofilm development in a minimally buffered environment.
Peter TranStephen M LanderArthur PrindlePublished in: mBio (2024)
Biofilms provide individual bacteria with many advantages, yet dense cellular proliferation can also create intrinsic metabolic challenges including excessive acidification. Because such pH stress can be masked in buffered laboratory media-such as MSgg commonly used to study Bacillus subtilis biofilms-it is not always clear how such biofilms cope with minimally buffered natural environments. Here, we report how B. subtilis biofilms overcome this intrinsic metabolic challenge through an active pH regulation mechanism. Specifically, we find that these biofilms can modulate their extracellular pH to the preferred neutrophile range, even when starting from acidic and alkaline initial conditions, while planktonic cells cannot. We associate this behavior with dynamic interplay between acetate and acetoin biosynthesis and show that this mechanism is required to buffer against biofilm acidification. Furthermore, we find that buffering-deficient biofilms exhibit dysregulated biofilm development when grown in minimally buffered conditions. Our findings reveal an active pH regulation mechanism in B. subtilis biofilms that could lead to new targets to control unwanted biofilm growth.IMPORTANCEpH is known to influence microbial growth and community dynamics in multiple bacterial species and environmental contexts. Furthermore, in many bacterial species, rapid cellular proliferation demands the use of overflow metabolism, which can often result in excessive acidification. However, in the case of bacterial communities known as biofilms, these acidification challenges can be masked when buffered laboratory media are employed to stabilize the pH environment for optimal growth. Our study reveals that B. subtilis biofilms use an active pH regulation mechanism to mitigate both growth-associated acidification and external pH challenges. This discovery provides new opportunities for understanding microbial communities and could lead to new methods for controlling biofilm growth outside of buffered laboratory conditions.
Keyphrases
- candida albicans
- biofilm formation
- bacillus subtilis
- pseudomonas aeruginosa
- staphylococcus aureus
- signaling pathway
- mental health
- induced apoptosis
- healthcare
- oxidative stress
- small molecule
- gene expression
- single cell
- genome wide
- microbial community
- ionic liquid
- risk assessment
- weight loss
- cell death
- cell cycle arrest
- endoplasmic reticulum stress