Login / Signup

Stability Enhancement and Microstructural Modification of Ni-Rich Cathodes via Halide Doping.

Luqman AzhariBryer C SousaRidwan AhmedRui WangZhenzhen YangGuanhui GaoYimo HanYan Wang
Published in: ACS applied materials & interfaces (2022)
Elemental doping is an effective strategy to modify surface and bulk chemistry in NMC cathode materials. By adding small amounts of lithium halide salts during the calcination process, the Ni-rich NMC811 cathode is doped with Br, Cl, or F halogens. The dopant type has a significant impact on the lithiation process and heavily influences the final cathode porosity and surface morphology. Utilizing a variety of electrochemical, surface, and bulk characterization techniques, it is demonstrated that an initial content of 5 mol % LiBr or LiCl in the lithium source is effective in improving capacity retention while also providing excellent rate performance. The improvements are attributed to a substantial increase in specific surface area, the formation of a stable cathode electrolyte interface (CEI) layer, and suppressed surface reconstruction. In addition, the particle microstructure is better equipped to handle cyclic volume changes with increased values of critical crack lengths. Overall, it is demonstrated that anion doping via the addition of lithium halide salts is a facile approach toward Ni-rich NMC modification for enhanced cathode performance.
Keyphrases