Albiflorin Decreases Glutamate Release from Rat Cerebral Cortex Nerve Terminals (Synaptosomes) through Depressing P/Q-Type Calcium Channels and Protein Kinase A Activity.
Cheng-Wei LuTzu-Yu LinYa-Ying ChangKuan-Ming ChiuMing-Yi LeeSu Jane WangPublished in: International journal of molecular sciences (2024)
The purpose of this study was to investigate whether and how albiflorin, a natural monoterpene glycoside, affects the release of glutamate, one of the most important neurotransmitters involved in neurotoxicity, from cerebrocortical nerve terminals (synaptosomes) in rats. The results showed that albiflorin reduced 4-aminopyridine (4-AP)-elicited glutamate release from synaptosomes, which was abrogated in the absence of extracellular Ca 2+ or in the presence of the vesicular glutamate transporter inhibitor or a P/Q-type Ca 2+ channel inhibitor, indicating a mechanism of action involving Ca 2+ -dependent depression of vesicular exocytotic glutamate release. Albiflorin failed to alter the increase in the fluorescence intensity of 3,3-diethylthiacarbocyanine iodide (DiSC 3 (5)), a membrane-potential-sensitive dye. In addition, the suppression of protein kinase A (PKA) abolished the effect of albiflorin on glutamate release. Albiflorin also reduced the phosphorylation of PKA and synaptosomal-associated protein of 25 kDa (SNAP-25) and synapsin I at PKA-specific residues, which correlated with decreased available synaptic vesicles. The results of transmission electron microscopy (TEM) also observed that albiflorin reduces the release competence of synaptic vesicles evoked by 4-AP in synaptosomes. In conclusion, by studying synaptosomally released glutamate, we suggested that albiflorin reduces vesicular exocytotic glutamate release by decreasing extracellular Ca 2+ entry via P/Q-type Ca 2+ channels and reducing PKA-mediated synapsin I and SNAP-25 phosphorylation.