Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism.
Pabitra Narayan SamantaDevashis MajumdarJerzy LeszczynskiPublished in: Journal of chemical information and modeling (2023)
To combat mischievous coronavirus disease followed by continuous upgrading of therapeutic strategy against the antibody-resistant variants, the molecular mechanistic understanding of protein-drug interactions is a prerequisite in the context of target-specific rational drug development. Herein, we attempt to decipher the structural basis for the inhibition of SARS-CoV-2 main protease (M pro ) through the elemental analysis of potential energy landscape and the associated thermodynamic and kinetic properties of the enzyme-inhibitor complexes using automated molecular docking calculations in conjunction with classical force field-based molecular dynamics (MD) simulations. The crux of the scalable all-atom MD simulations consummated in explicit solvent media is to capture the structural plasticity of the viral enzyme due to the binding of remdesivir analogues and ascertain the subtle interplay of noncovalent interactions in stabilizing specific conformational states of the receptor that controls the biomolecular processes related to the ligand binding and dissociation kinetics. To unravel the critical role of modulation of the ligand scaffold, we place further emphasis on the estimation of binding free energy as well as the energy decomposition analysis by employing the generalized Born and Poisson-Boltzmann models. The estimated binding affinities are found to vary between -25.5 and -61.2 kcal/mol. Furthermore, the augmentation of inhibitory efficacy of the remdesivir analogue crucially stems from the van der Waals interactions with the active site residues of the protease. The polar solvation energy contributes unfavorably to the binding free energy and annihilates the contribution of electrostatic interactions as derived from the molecular mechanical energies.
Keyphrases
- molecular dynamics
- density functional theory
- sars cov
- molecular docking
- molecular dynamics simulations
- binding protein
- coronavirus disease
- dna binding
- single molecule
- respiratory syndrome coronavirus
- high throughput
- machine learning
- genome wide
- small molecule
- deep learning
- dna methylation
- protein protein
- preterm infants
- drug induced
- climate change
- aqueous solution