Non-random chromosome segregation and chromosome eliminations in the fly Bradysia (Sciara).
Susan A GerbiPublished in: Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology (2022)
Mendelian inheritance is based upon random segregation of homologous chromosomes during meiosis and perfect duplication and division of chromosomes in mitosis so that the entire genomic content is passed down to the daughter cells. The unusual chromosome mechanics of the fly Bradysia (previously called Sciara) presents many exceptions to the canonical processes. In male meiosis I, there is a monopolar spindle and non-random segregation such that all the paternal homologs move away from the single pole and are eliminated. In male meiosis II, there is a bipolar spindle and segregation of the sister chromatids except for the X dyad that undergoes non-disjunction. The daughter cell that is nullo-X degenerates, whereas the sperm has two copies of the X. Fertilization restores the diploid state, but there are three copies of the X chromosome, of which one or two of the paternally derived X chromosomes will be eliminated in an early cleavage division. Bradysia (Sciara) coprophila also has germ line limited L chromosomes that are eliminated from the soma. Current information and the molecular mechanisms for chromosome imprinting and eliminations, which are just beginning to be studied, will be reviewed here.