Hyperspectral Imaging Technique to Characterize Digestate and Visualize Physical Impurities in Anaerobically Digested Biowaste.
Wei PengLu FanHua ZhangHao-Yang XianFan LüPin-Jing HePublished in: Environmental science & technology (2024)
Methods used to monitor anaerobic digestion (AD) indicators are commonly based on wet chemical analyses, which consume time and materials. In addition, physical disturbances, such as floating granules (FGs), must be monitored manually. In this study, we present an eco-friendly, high-throughput methodology that uses near-infrared hyperspectral imaging (NIR-HSI) to build a machine-learning model for characterizing the chemical composition of the digestate and a target detection algorithm for identifying FGs. A total of 732 digestate samples were used to develop and validate a model for calculating total nitrogen (TN), total organic carbon (TOC), total ammonia nitrogen (TAN), and chemical oxygen demand (COD), which are the chemical indicators of responses to disturbances in the AD process. Among these parameters, good model performance was obtained using the dried digestates data set, where the coefficient of determination ( R 2 test ) and the root-mean-square error (RMSE test ) were 0.82 and 1090 mg/L for TOC, and 0.86 and 690 mg/L for TN, respectively. Furthermore, the unique spectral features of the FGs in reactors with a lipid-rich substrate meant that they could also be identified by the HSI system. Based on these findings, developing NIR-HSI solutions to monitor the digestate properties in AD plants has great potential for industrial application.
Keyphrases
- anaerobic digestion
- sewage sludge
- machine learning
- antibiotic resistance genes
- high throughput
- municipal solid waste
- high resolution
- physical activity
- mental health
- fluorescence imaging
- photodynamic therapy
- big data
- deep learning
- artificial intelligence
- drug release
- risk assessment
- computed tomography
- magnetic resonance imaging
- fluorescent probe
- single cell
- human health
- wastewater treatment
- quantum dots
- diffusion weighted imaging
- sensitive detection