Login / Signup

Remotely controlled drug release in deep brain regions of non-human primates.

Matthew G WilsonTaylor D WebbHenrik OdéenJan Kubanek
Published in: bioRxiv : the preprint server for biology (2023)
Many areas of science and medicine would benefit from selective release of drugs in specific regions of interest. Nanoparticle drug carriers activated by focused ultrasound-remotely applied, depth-penetrating energy-may provide such selective interventions. Here, we developed stable, ultrasound-responsive nanoparticles that can be used to release drugs effectively and safely in non-human primates. The nanoparticles were used to release propofol in deep brain visual regions. The release reversibly modulated the subjects' visual choice behavior and was specific to the targeted region and to the released drug. Gadolinium-enhanced MRI imaging suggested an intact blood-brain barrier. Blood draws showed normal clinical chemistry and hematology. In summary, this study provides a safe and effective approach to release drugs on demand in selected deep brain regions at levels sufficient to modulate behavior.
Keyphrases