Generation of Diazomethyl Radicals by Hydrogen Atom Abstraction and Their Cycloaddition with Alkenes.
Yong-Liang SuKuiyong DongHaifeng ZhengMichael P DoylePublished in: Angewandte Chemie (International ed. in English) (2021)
A general catalytic methodology for the synthesis of pyrazolines from α-diazo compounds and conjugated alkenes is reported. The direct hydrogen atom transfer (HAT) process of α-diazo compounds promoted by the tert-butylperoxy radical generates electrophilic diazomethyl radicals, thereby reversing the reactivity of the carbon atom attached with the diazo group. The regiocontrolled addition of diazomethyl radicals to carbon-carbon double bonds followed by intramolecular ring closure on the terminal diazo nitrogen and tautomerization affords a diverse set of pyrazolines in good yields with excellent regioselectivity. This strategy overcomes the limitations of electron-deficient alkenes in traditional dipolar [3+2]-cycloaddition of α-diazo compounds with alkenes. Furthermore, the straightforward formation of the diazomethyl radicals provides umpolung reactivity, thus opening new opportunities for the versatile transformations of diazo compounds.
Keyphrases