Login / Signup

Novel Colorimetric Aptasensor for Zearalenone Detection Based on Nontarget-Induced Aptamer Walker, Gold Nanoparticles, and Exonuclease-Assisted Recycling Amplification.

Seyed Mohammad TaghdisiNoor Mohammad DaneshMohammad RamezaniAhmad Sarreshtehdar EmraniKhalil Abnous
Published in: ACS applied materials & interfaces (2018)
Zearalenone (ZEN) toxicity is a significant risk for human beings. Thus, it is of high importance to develop sensitive, precise, and inexpensive analytical methods for ZEN detection, especially in human serum. Here, a colorimetric aptasensor is presented for the determination of ZEN based on the nontarget-induced aptamer walker, catalytic reaction of gold nanoparticles (AuNPs), exonuclease III (Exo III) as a signal amplifier, and 4-nitrophenol as a colorimetric agent. Low amount of ZEN requirement and signal amplification are some of the distinct advantages of the proposed aptasensor. In the absence of ZEN, the aptamer (Apt) starts walking on the AuNP surface with the help of Exo III and binds to multiple complementary strands of aptamer, leading to the change of sample color from yellow to colorless. Upon the addition of ZEN, both the Apt and complementary strand exist as single-stranded DNAs on the surface of AuNPs, resulting in less access of 4-nitrophenol to the surface of AuNPs and less catalytic performance of AuNPs. In this situation, the color of the sample remains yellow (the color of 4-nitrophenol). The presented aptasensor was capable to detect ZEN in a wide linear dynamic range, 20-80 000 ng/L, with a detection limit of 10 ng/L. The prepared sensing strategy was successfully used for ZEN determination in the human serum sample.
Keyphrases