Login / Signup

Can Digital Enhancement Restore the Image Quality of Phosphor Plate-Based Radiographs Partially Damaged by Ambient Light?

Matheus Sampaio de OliveiraLuiz Eduardo Marinho-VieiraMatheus Barros-CostaMatheus Lima de Oliveira
Published in: Journal of imaging informatics in medicine (2024)
To assess the effect of digital enhancement on the image quality of radiographs obtained with photostimulable phosphor (PSP) plates partially damaged by ambient light. Radiographs of an aluminum step wedge were obtained using the VistaScan and Express systems. Half of the PSP plates was exposed to ambient light for 0, 10, 30, 60, or 90 s before being scanned. The resulting radiographs were exported with and without digital enhancement. Metrics for brightness, contrast, and contrast-to-noise ratio (CNR) were derived, and the ratio of each metric between the exposed-to-light and non-exposed-to-light halves of the radiographs was calculated. The resulting ratios of the radiographs with digital enhancement were subtracted from those without digital enhancement and compared among each other. For the VistaScan system, digital enhancement partially restored brightness, contrast, and CNR. For the Express system, digital enhancement only restored CNR and not the impact of ambient light on brightness and contrast. Specifically, digital enhancement restored 23.48% of brightness for the VistaScan, while percentages below 1% were observed for the Express. Digital enhancement restored 53.25% of image contrast for the VistaScan and 5.79% for the Express; 40.71% of CNR was restored for the VistaScan, and 35% for the Express. Digital enhancement can partially restore the damage caused by ambient light on the brightness and contrast of PSP-based radiographs obtained with the VistaScan, as well as on CNR for the VistaScan and Express systems. The exposure of PSP plates to light can lead to unnecessary retakes and increased patient exposure to X-rays.
Keyphrases
  • air pollution
  • magnetic resonance
  • particulate matter
  • image quality
  • computed tomography
  • contrast enhanced
  • magnetic resonance imaging
  • machine learning