Login / Signup

Encapsulation of Gadolinium Oxide Nanoparticle (Gd2O3) Contrasting Agents in PAMAM Dendrimer Templates for Enhanced Magnetic Resonance Imaging in Vivo.

Shewaye Lakew MekuriaTilahun Ayane DebeleHsieh-Chih Tsai
Published in: ACS applied materials & interfaces (2017)
There has been growing interest in the research of nanomaterials for biomedical applications in recent decades. Herein, a simple approach to synthesize the G4.5-Gd2O3-poly(ethylene glycol) (G4.5-Gd2O3-PEG) nanoparticles (NPs) that demonstrate potential as dual (T1 and T2) contrasting agents in magnetic resonance imaging (MRI) has been reported in this study. Compared to the clinically popular Gd-DTPA contrasting agents, G4.5-Gd2O3-PEG NPs exhibited a longer longitudinal relaxation time (T1) and better biocompatibility when incubated with macrophage cell line RAW264.7 in vitro. Furthermore, the longitudinal relaxivity (r1) of G4.5-Gd2O3-PEG NPs was 53.9 s-1 mM-1 at 7T, which is equivalent to 4.8 times greater than to the Gd-DTPA contrasting agents. An in vivo T1-weighted MRI results revealed that G4.5-Gd2O3-PEG NPs significantly enhanced signals in the intestines, kidney, liver, bladder, and spleen. In addition, the T2-weighted MRI results revealed darker contrast in the kidney, which proves that G4.5-Gd2O3-PEG NPs can be exploited as T1 and T2 contrasting agents. In summary, these findings suggest that the G4.5-Gd2O3-PEG NPs synthesized by an alternative approach can be used as dual MRI contrasting agents.
Keyphrases
  • contrast enhanced
  • magnetic resonance imaging
  • drug delivery
  • magnetic resonance
  • computed tomography
  • diffusion weighted imaging
  • oxide nanoparticles
  • adipose tissue
  • single cell
  • climate change