Prevention and Killing Efficacy of Carbapenem Resistant Enterobacteriaceae (CRE) and Vancomycin Resistant Enterococci (VRE) Biofilms by Antibiotic-Loaded Calcium Sulfate Beads.
Paul StoodleyJacob BrooksCasey W PetersNan JiangCraig P DeluryPhillip A LaycockSean S AikenDevendra H DusanePublished in: Materials (Basel, Switzerland) (2020)
Carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococci (VRE) have emerged as multidrug-resistant (MDR) pathogens associated with periprosthetic joint infections (PJI). In this study, we evaluated the efficacy of antibiotic-loaded calcium sulfate beads (ALCSB) in inhibiting bacterial growth, encouraging biofilm formation and killing preformed biofilms of CRE and VRE. Three strains of Klebsiella pneumoniae (KP) and a strain of Enterococcus faecalis (EF) were used. ALCSB of 4.8-mm diameter were loaded with vancomycin (V) and gentamicin (G), V and rifampicin (R), V and tobramycin (T) or R and meropenem (M), and placed onto tryptic soy agar (TSA), spread with one of the test strains and incubated for 24 h at 37 °C. Beads were transferred daily onto fresh TSA spread plates and the zone of inhibition (ZOI) was recorded until no inhibition was observed. ALCSB containing R + M or R + V produced the most extensive ZOI up to 5 weeks. Biofilm prevention efficacy was investigated by challenging ALCSB daily with 5 × 105 CFU/mL bacterial cells and analyzing for biofilm formation at challenges 1, 2 and 3. In the biofilm killing experiments, ALCSB were added to pre-grown 3-day biofilms of KP and EF strains, which were then analyzed at days 1 and 3 post-exposure. The CFU counts and confocal images of the attached cells showed that ALCSB treatment reduced colonization and biofilm formation significantly (5-7 logs) with combinations of R + M or R + V, compared to unloaded beads. This study provides evidence that the local release of antibiotics from ALCSB may be useful in treating the biofilms of multidrug-resistant strains of CRE and VRE.
Keyphrases
- biofilm formation
- multidrug resistant
- candida albicans
- escherichia coli
- klebsiella pneumoniae
- pseudomonas aeruginosa
- gram negative
- staphylococcus aureus
- methicillin resistant staphylococcus aureus
- acinetobacter baumannii
- drug resistant
- induced apoptosis
- drug delivery
- cell cycle arrest
- cystic fibrosis
- cancer therapy
- signaling pathway
- optical coherence tomography
- cell death
- cell proliferation
- atomic force microscopy
- mycobacterium tuberculosis
- deep learning
- preterm birth
- high resolution
- mass spectrometry